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SUMMARY

The Fanconi anemia (FA) pathway is critical for the
cellular response to toxic DNA interstrand crosslinks
(ICLs). Using a biochemical purification strategy, we
identified UHRF1 as a protein that specifically inter-
acts with ICLs in vitro and in vivo. Reduction of
cellular levels of UHRF1 by RNAi attenuates the FA
pathway and sensitizes cells to mitomycin C. Knock-
down cells display a drastic reduction in FANCD2
foci formation. Using live-cell imaging, we observe
that UHRF1 is rapidly recruited to chromatin in
response to DNA crosslinking agents and that this
recruitment both precedes and is required for the
recruitment of FANCD2 to ICLs. Based on these re-
sults, we describe a mechanism of ICL sensing and
propose that UHRF1 is a critical factor that binds to
ICLs. In turn, this binding is necessary for the subse-
quent recruitment of FANCD2, which allows the DNA
repair process to initiate.

INTRODUCTION

Interstrand crosslinks (ICLs) of the Watson-Crick DNA helix are

extremely toxic to the genome. Consequently, humans have

evolved effective mechanisms to respond to and repair such

DNA damage. One such mechanism is the Fanconi anemia

(FA) DNA repair pathway, which when deregulated causes the

FA disease. FA is a recessive cancer predisposition and devel-

opmental syndrome that is characterized by hypersensitivity to

DNA interstrand crosslinking agents (Cohn and D’Andrea,

2008). Proteins mutated in 17 FA complementation groups

work together to ensure the repair of ICLs, a process that likely

involves nucleotide excision repair, translesion synthesis, and

homologous recombination. Central to the pathway are the

FANCD2 and FANCI proteins. Upon DNA damage, these pro-

teins are monoubiquitinated by the FA core E3 ubiquitin ligase

complex, which is comprised of eight other FA proteins. After

ubiquitination, FANCD2, FANCI and the remaining seven FA pro-

teins are recruited to the ICLs (Ciccia et al., 2007). It is clear that

the repair process can be initiated and performed both in a repli-

cation dependent (Knipscheer et al., 2009; Räschle et al., 2008)

and replication independent process (Muniandy et al., 2009;

Vasquez, 2010). We set out to identify proteins that are able to

specifically recognize ICLs and thus might serve as sensors for

such adducts. Here, we report the identification of UHRF1 as a

protein that specifically recognizes ICLs in vitro and is required

for effective repair of ICLs in vivo.

RESULTS

Purification of UHRF1
To purify a potential sensor protein for ICLs we developed a

biochemical purification scheme (Figure 1A). The strategy is

based on the assumption that an ICL forces the DNA to adopt

a structure sufficiently different from that of a Watson-Crick

double helix to provide enhanced binding properties for such a

protein. We designed a 50-biotinylated double-stranded DNA

molecule containing a unique central TA sequence (Figure 1B).

Incubation of the DNA with the psoralen derivative 4,50,8-trime-

thylpsoralen (TMP), which intercalates specifically at the TA

sequence, followed by exposure to ultraviolet A (UVA) irradiation,

allowed for the generation of a single well-defined ICL in the

duplex DNA. Examination of the resulting molecule confirmed

complete crosslinking (Figure 1C). Using the crosslinked DNA,

we then prepared two chromatography columns, one containing

non-crosslinked DNA and the other containing the identical DNA

sequence, now crosslinked. HeLa cells were treated with mito-

mycin C (MMC) to activate the ICL repair pathways, and nuclear

extract was prepared. Using the two columns, we purified nu-

clear proteins interacting with regular DNA or ICL-containing

DNA and analyzed them by SDS-PAGE followed by silver stain.

As expected, we observed a number of polypeptides that inter-

acted equally well with both DNA structures (Figure 1D). How-

ever, one polypeptide was more abundant in the sample from

DNA containing an ICL than in the sample from the control

DNA, migrating with an apparent molecular weight of 95 kDa

(Figure 1D, lane 2). We excised the band corresponding to this

polypeptide, and subsequent mass spectrometry (MS) analysis

of the band resulted in 76 and 11 peptides from the UHRF1

and UHRF2 proteins, respectively (Figure 1E). UHRF1 (also

known as RNF106 and NP95) is a RING E3 ubiquitin ligase.

Cell Reports 10, 1947–1956, March 31, 2015 ª2015 The Authors 1947

mailto:martin.cohn@bioch.ox.ac.uk
http://dx.doi.org/10.1016/j.celrep.2015.02.053
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.02.053&domain=pdf


UHRF2 is highly similar to UHRF1. Given the �7-fold higher

abundance of UHRF1 compared with UHRF2, we chose to focus

further investigation on UHRF1. UHRF1 has been described as a

protein that interacts directly with hemimethylated DNA, and has

a higher affinity for hemimethylated than for unmodified or fully

methylated DNA. As such, the protein was shown to recruit the

DNA methyltransferase DNMT1 to newly replicated DNA, medi-

ating methylation of the unmethylated, newly synthesized DNA

strand, thereby ensuring the maintenance of methylated CpG

sequences (Sharif et al., 2007).

UHRF1 Interacts Directly with DNA ICLs
Our data show an enrichment of UHRF1 bound to the ICL-con-

taining DNA. Given that UHRF1 possesses DNA binding activity

toward methylated DNA, we speculated that this protein might

also recognize and directly interact with ICLs. However, we per-
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Figure 1. Purification of UHRF1

(A) Purification scheme for ICL-interacting pro-

teins. Biotinylated DNA substrate is incubated with

HeLa nuclear extract and captured by streptavi-

din-sepharose beads. The bound proteins are

eluted, separated by SDS-PAGE, and analyzed by

silver stain.

(B) Schematic of the biotinylated ICLs used in the

purification.

(C) Analysis of the crosslinked ICL1 on an 8 M urea

20% polyacrylamide gel.

(D) Proteins purified from HeLa nuclear extract

were stained by silver stain. The polypeptide

identified by MS is indicated.

(E) List of identified peptides that match UHRF1.

There were 76 peptides derived from UHRF1.

Amino acids contained in the identified peptides

are indicated in red.

formed our purification using HeLa nu-

clear extract, raising the possibility that

UHRF1 interacted indirectly with the

ICL. In order to test whether UHRF1 inter-

acts directly with the ICL, we set out to

establish an in vitro DNA binding assay.

We expressed full-length UHRF1 protein

in Sf9 cells and purified it to homogeneity

(Figure 2A). A biotinylated ICL-containing

DNA molecule, ICL2 (Figure 2B), which is

60 bp long, was incubated with recombi-

nant UHRF1 protein. Protein bound to

DNA was purified using streptavidin-

coated beads. UHRF1 was not bound to

beads in the absence of DNA, and was

bound weakly to non-crosslinked ICL2

DNA (Figure 2C, lanes 2 and 3). As ex-

pected, substantially more protein was

bound to the ICL-containing DNA (Fig-

ure 2C, lane 4). Another E3 ligase,

FANCL, did not display preferential bind-

ing, and thus served as a negative control

for the experiment (Figure 2C, lanes 7

and 8). These data demonstrate a direct interaction between

UHRF1 and the ICL.

To further reinforce these findings, we examined the ICL bind-

ing activity of UHRF1 by performing an electrophoretic mobility

shift assay (EMSA). To be able to directly compare binding to

ICL-containing DNA with binding to hemimethylated DNA, we

designed two DNA molecules that are identical except for the

central two base pairs. In one molecule, named ICL8, these cen-

tral bases are TA; in the other, named CpG3, the bases are CG

(Figure 2D). This allows for the introduction of either an ICL or

methyl-C in the center of either molecule. As expected, UHRF1

bound weakly to the unmodified ICL8 probe (Figure 2E, lane 5).

In contrast, the protein formed a strong complex with the ICL-

containing ICL8 probe (Figure 2E, lane 6). Our experiments

also confirmed that UHRF1 interacts better with hemimethylated

DNA than with unmodified DNA (Figure 2E, lanes 7 and 8). We
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confirmed the specificity of the protein-DNA complex using

antibodies that specifically recognize the hemagglutinin (HA)-

tag of the recombinant UHRF1 protein. Upon addition of these

Figure 2. UHRF1 Interacts Directly with DNA ICLs

(A) Coomassie blue stain of recombinant FLAG-HA-tagged UHRF1 and FLAG-HA-tagged FANCL purified from Sf9 cells.

(B) Schematic of the biotinylated ICL2 used in the in vitro DNA binding assay in (C).

(C) In vitro DNA binding assay showing that recombinant UHRF1 binds more strongly to crosslinked ICL2-XL DNA than to normal ICL2 DNA.

(D) Schematic of ICL8 and CPG3 DNA substrates used in (E).

(E) EMSA showing that UHRF1 forms stronger protein-DNA complexes with crosslinked ICL8-XL and hemimethylated CPG3-Me DNA substrates than with the

corresponding unmodified DNA molecules. Super-shift using antibody against the HA-tag on recombinant UHRF1 confirms that the protein/DNA complex is

formed by UHRF1.

(F) Coomassie blue stain of recombinant FLAG-HA-tagged UHRF1-DSRA purified from Sf9 cells.

(G) EMSA using recombinant UHRF1-DSRA lacking the SRA domain shows that the SRA domain of UHRF1 is responsible for the interaction with the ICL.

(H) Fluorescence anisotropy assay determining the characteristics of UHRF1 binding to either ICL8 or ICL8-XL. Normalized and averaged anisotropy ± SEM.
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Figure 3. Knockdown of UHRF1 Sensitizes

Cells to MMC

(A) A quantitative western blot analysis comparing

the serial dilution of the lysate of HeLa cells ex-

pressing non-targeting shRNA (HeLa.Scramble),

and HeLa cells expressing shRNA targeting

UHRF1 (HeLa.shUHRF1), determines the effi-

ciency of UHRF1 knockdown to be �95%.

(B) A clonogenic survival assay of HeLa.Scramble

and HeLa.shUHRF1 cells shows that UHRF1 is

required for cell survival after MMC treatment.

(C) A clonogenic survival assay of HeLa.Scramble

and HeLa.shUHRF1 cells shows that UHRF1

is partly required for cell survival after cisplatin

treatment.

(D) A clonogenic survival assay of HeLa.Scramble

and HeLa.shUHRF1 cells shows that UHRF1 is

required for cell survival after TMP/UVA treatment.

(E) A clonogenic survival assay of HeLa.Scramble

and HeLa.shUHRF1 cells shows that UHRF1 is not

required for cell survival after IR treatment.

(F) A clonogenic survival assay of HeLa.Scramble

and HeLa.shUHRF1 cells shows that UHRF1 is

partly required for cell survival after UVC treatment.

(G) A clonogenic survival assay of HeLa.Scramble,

HeLa.shFANCD2, HeLa.shUHRF1, and HeLa.

shFANCD2/shUHRF1 shows that UHRF1 and

FANCD2 are epistatic.

Error bars in (B)–(G) show SD. See also Figure S1.

antibodies to the EMSA reaction, we

observed a complete disappearance of

the observed complex. Simultaneously,

a slower-migrating complex appeared,

demonstrating that the complex is

composed of UHRF1 andDNA (Figure 2E,

lanes 9 and 10).

The SRA domain of UHRF1 was previ-

ously shown to be required for the inter-

action with hemimethylated DNA (Arita

et al., 2008). Thus, to gain further mecha-

nistic insight into how UHRF1 recognizes

ICLs, we introduced a deletion in the SRA

domain and then assessed the ability of

the resulting protein to interact with the

ICL. Recombinant UHRF1-DSRA was

purified (Figure 2F) and subjected to EMSA analysis. As ex-

pected, deleting the SRA domain abrogated the interaction

with the ICL (Figure 2G).
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These experiments, which were conducted using two

separate methods, reveal that UHRF1 has a stronger in-

teraction with ICL-containing DNA than with normal DNA.

However, to gain additional information about the relative

affinities, we applied fluorescence anisotropy to determine

the respective KD values. The DNA molecules were 50 labeled
with Alexa Fluor 488, and the interaction of UHRF1 with

DNA was monitored as protein concentrations were increased.

We determined the KD of the interaction between UHRF1

and the ICL-containing DNA as 0.81 mM. The corresponding

KD value for the interaction with normal DNA was signifi-

cantly higher (3.06 mM; Figure 2H), demonstrating that UHRF1

has a stronger affinity for ICL-containing DNA than for undam-

aged DNA.

Taken together, these data show that UHRF1 interacts directly

with an ICL in vitro via its SRA domain.
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Figure 4. UHRF1 Is Required for Normal FANCD2 Foci Formation In Vivo

(A) FANCD2 foci accumulate after MMC treatment in control HeLa cells, whereas FANCD2 foci formation is defective in the absence of UHRF1. Scale bar, 10 mm.

(B) Quantification of the percentage of cells with more than 20 foci per cell. The error bars are calculated based on two individual experiments and show SD.

See also Figure S1.
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Knockdown of UHRF1 Sensitizes Cells to MMC
SinceUHRF1 is able to recognize and bind directly to ICLs in vitro,

we speculated that the protein might be involved in the cellular

response to ICLs in vivo. The FA DNA repair pathway responds

to ICLs, involving 17 FA proteins in cooperation with a number of

other non-FA DNA repair proteins. Therefore, knockdown of

UHRF1 is expected to sensitize cells to MMC. We established a

HeLa cell line in which the cellular level of UHRF1 is reduced to

<5% using small hairpin RNA (shRNA) (Figure 3A). We then per-

formed clonogenic survival assays and found that indeed

knockdown of UHRF1 led to a significant decrease in survival in

response to MMC (Figure 3B). We repeated this experiment in

HEK293T cells and observed the same effect (data not shown).

Surprisingly, UHRF1 knockdown cells were only mildly sensitive

to cisplatin (Figure 3C). Given the difference in sensitivity to

MMC and cisplatin, we sought to induce ICLs and as little as

possible of other types of DNA damage (e.g., mono-adducts and

single- or double-strand breaks). One of the best ways to achieve

this is to use TMP in combination with UVA (Huang et al., 2013).

Asexpected,weobservedaclear sensitivity to thismorehomoge-

neous ICLDNAdamage (Figure 3D).Wealso assessed the cellular

sensitivity to other types of DNA damage, and found only slight

sensitivity to IR and UVC (Figures 3E and 3F). In a previous study,

Muto et al. (2002) also described sensitivity of UHRF1-deficient

cells to genotoxic agents, although they observed a greater

sensitivity to IR and UVC. The increased sensitivity might be due

to their use of mouse embryonic stem cells, rather than human

cell lines, as were used in the present study.

Given the specific sensitivity of the UHRF1 knockdown cells to

ICL-inducing agents, we suspected a possible functional

connection to the FA DNA repair pathway. To test this directly,

we investigated the cellular sensitivities following knockdown

of UHRF1, FANCD2, or both. We found that cells depleted of

FANCD2 (Figure S1A) were more sensitive to MMC than were

cells depleted of UHRF1 (Figure 3G). However, depletion of

UHRF1 in cells in which FANCD2 was already depleted did not

further sensitize the cells. On the contrary, we found a slight sup-

pression of sensitivity in these cells.

UHRF1 Is Required for Normal FANCD2 Foci Formation
In Vivo
Given the epistatic relationship between UHRF1 and FANCD2,

we speculated that FANCD2 nuclear foci formation could be

dependent onUHRF1. To test this hypothesis, we treated control

and knockdown cells with MMC and stained them for FANCD2

by immunofluorescence at various time points. The cell-cycle

profile was comparable between the two cell lines (Figure S1B).

Some control cells with increased numbers of foci were already

visible after 3 hr, and the number of positive cells increased

steadily for up to 9 hr (Figure 4A). In contrast, the knockdown

cells displayed nearly no increase in foci formation at the 3-hr

and 6-hr time points, and only a modest increase at the last

time point at 9 hr. Quantification of the data showed that the per-

centage of cells with more than 20 foci rose to �60% in control

cells at 9 hr, whereas the corresponding number was only�20%

in knockdown cells (Figure 4B).

UHRF1 Is Rapidly Recruited to ICLs In Vivo and Precedes
the Recruitment of FANCD2
Given that UHRF1 interacts directly with ICLs in vitro and is

required for proper foci formation of FANCD2 in vivo, we specu-

lated that UHRF1 itself is recruited to crosslinked DNA in vivo,

and that this triggers the chromatin recruitment of FANCD2. To

test this hypothesis directly, we turned to live-cell imaging using

fluorophore-tagged proteins. UHRF1 and FANCD2 were stably

expressed in HeLa cells as fusion proteins with mCherry and

EGFP, respectively. We introduced ICLs with a localized laser

stripe after incubating the cells with TMP (Thazhathveetil et al.,

2007). We observed that UHRF1 was recruited to ICLs very

quickly and formed a clear stripe within 30 s. FANCD2 was

also recruited, albeit slightly more slowly than UHRF1, and

formed a visible stripe within 5min (Figure 5A). Importantly, there

was no recruitment of either one of the proteins in the absence of

TMP (Figure 5B). These data encouraged us to directly test, in

live cells, whether UHRF1 mediates the recruitment of FANCD2

to ICLs. Using control and UHRF1 knockdown cells, we as-

sessed the recruitment of FANCD2 to ICLs in the presence and

absence of UHRF1. Strikingly, we found that knockdown of

UHRF1 completely abolished FANCD2 recruitment (Figure 5C).

These experiments further reinforce the notion that UHRF1 is

recruited directly to ICLs, and that this recruitment is required

for the subsequent recruitment of FANCD2.

DISCUSSION

Repair of an ICL requires the recruitment of FANCD2 to the site of

damage (Hu et al., 2011; Knipscheer et al., 2009). The mecha-

nism of this critical recruitment is unknown. Here, we show

that UHRF1 is recruited very quickly to ICLs in vivo, and that

the recruitment both precedes and is required for the recruitment

of FANCD2 to the ICL.

UHRF1 Is a Sensor for ICLs
UHRF1 interacts directly with the ICL through an SRA nucleic

acid interaction domain. The SRA domain was previously re-

ported to be necessary for the interaction with hemimethylated

DNA (Arita et al., 2008), facilitating the recruitment of DNMT1

to newly replicated DNA (Bostick et al., 2007). Using in vitro

Figure 5. UHRF1 Is Rapidly Recruited to ICLs In Vivo and Precedes the Recruitment of FANCD2

(A and B) HeLa cells expressing mCherry-tagged UHRF1 and EGFP-tagged FANCD2 were (A) pre-treated with TMP or (B) untreated, and microirradiated at the

indicated areas (white arrows). Charts on the right show quantification of mCherry-UHRF1 and EGFP-FANCD2 at the ICL sites. UHRF1 and FANCD2 were

recruited to TMP-induced ICLs sites (A), but not to irradiated sites in the absence of TMP (B). Scale bar, 10 mm.

(C) HeLa cells expressing EGFP-tagged FANCD2 with or without UHRF1 knockdown were microirradiated at the indicated areas (white arrows). Depletion of

UHRF1 abrogates the rapid accumulation of FANCD2 at the ICLs. Scale bar, 10 mm. Charts on the right show quantification of EGFP-FANCD2 at the ICL sites.

(D)Model showinghowUHRF1 is recruited to the ICL, facilitating the recruitment of FANCD2,whichagain precedes the recruitmentof additionalDNA repair factors.

See also Figure S1.
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protein-DNA binding assays, we found that UHRF1 interacts

roughly as strongly with hemimethylated DNA as with a DNA

probe containing a single ICL. In vivo, when the DNA is in the

context of chromatin, UHRF1 forms additional contacts with his-

tone H3 through its TTD and PHD domains (Gelato et al., 2014;

Xie et al., 2012), which facilitate its recruitment to chromatin.

The combination of these three interactions is likely to ensure

both stronger binding and higher specificity.

Specificity of UHRF1 for Different Types of ICLs
Interestingly, our studies uncovered that UHRF1 responds

to ICLs formed by the psoralen compound TMP as well as to

ICLs formed by MMC, but less so to ICLs formed by cisplatin.

ICLs formed by either TMP or MMC cause minor distortions of

the DNA helix, whereas ICLs formed by cisplatin cause a major

distortion (Guainazzi and Schärer, 2010). Thus, it is possible

that UHRF1 specifically recognizes ICLs with minor distortions.

Structural studies of the UHRF1/ICL complex will help to eluci-

date the atomic nature of this protein-DNA interaction. Both

psoralens and MMC are found in nature, whereas cisplatin is a

chemically synthesized compound not found in nature. The

observed specificity might reflect evolution of the FA pathway

toward its current form of ICL repair in humans.

UHRF1 Is Recruited to ICLs In Vivo and Is Required for
the Recruitment of FANCD2
We found that UHRF1 is recruited to ICLs in vivo within seconds

of their appearance in the chromosomes. We also found that this

recruitment precedes and is required for the recruitment of

FANCD2. It is likely that UHRF1 is recruited directly to the ICL,

thereby forming a landing platform for FANCD2 (Figure 5D).

FANCD2 also possesses DNA binding activity itself (Joo et al.,

2011), and it might be that the combination of this basal DNA

binding and a potential interaction with UHRF1 allows for a sta-

ble retention of FANCD2 at the ICL. Repair of ICLs requires the

recruitment of FANCD2, which allows for the recruitment of

XPF/ERCC1 and other nucleases (Hu et al., 2011). Therefore, it

is possible that the recruitment of UHRF1 and subsequently

FANCD2 precedes the recruitment of specific endonucleases

required for ICL repair, in good agreement with recent reports

(Hodskinson et al., 2014; Klein Douwel et al., 2014). The small

gap in time between the recruitment of UHRF1 and FANCD2

might also allow for the recruitment of other factors; for instance,

it was shown that NER factors are recruited to an ICL preceding

the recruitment of some FA proteins (Shen et al., 2009).

Conclusions
In conclusion, we present a mechanism for sensing DNA ICLs.

We show that UHRF1 specifically recognizes and binds to ICLs

within seconds after their appearance in the genome, and that

this recruitment allows for the subsequent recruitment of

FANCD2, permitting the DNA repair process to initiate.

EXPERIMENTAL PROCEDURES

Cell Lines, Antibodies, and Plasmids

HeLa and HEK293T cells were grown in DMEM (D5796; Sigma-Aldirch) sup-

plemented with 2.5%–10% fetal bovine serum (FBS). The following antibodies

were used: anti-UHRF1 (sc-373; SantaCruz Biotechnology), anti-FANCD2 (sc-

20022; Santa Cruz Biotechnology), anti-a-tubulin (5829;Millipore), and anti-HA

(mouse monoclonal antibody clone 12CA5).

EGFP-fused FANCD2 and mCherry-fused UHRF1 cDNA were expressed

using the pOZ-N plasmid (Nakatani and Ogryzko, 2003). shRNA-mediated

knockdown of the UHRF1 and FANCD2 genes was achieved by expressing

the target sequence 50-AGATATAACGTTAGGGTTT-30 and 50-GAGCAAAGC

CACTGAGGTA-30, respectively, in the pSuper.retro vector (Clontech). Trans-

fections of plasmid DNA were carried out using FuGENE6 (Promega) accord-

ing to the manufacturer’s instructions. The UHRF1 SRA domain deletion

plasmid was generated as above, with amino acids 427–630 deleted.

Preparation of Interstrand Crosslinked DNA Substrates

The DNA oligos were annealed in a buffer containing 10 mM Tris-HCl (pH 7.5),

100 mM NaCl, and 1 mM EDTA. TMP (T6137, Sigma-Aldrich)/UVA (365 nm)

crosslinking induction was performed as described previously (Esposito et al.,

1988). Interstrandcrosslinkingwasconfirmedby8Murea20%denaturingPAGE.

ICL-Binding Protein Purification and UHRF1-DNA In Vitro Binding

Nuclear proteins were extracted as previously described (Dignam et al., 1983).

Then, 1 mg of nuclear extract from HeLa cells or 3 mg of recombinant UHRF1/

FANCL from Sf9 cells was incubated with 25 pmol biotin-labeled DNA sub-

strates (ICL1 and ICL1-XL were used for purification from nuclear extract,

and ICL2 and ICL2-XL were used for UHRF1/FANCL in vitro binding experi-

ments). The binding buffer contained 5 mM Tris (pH 7.9), 30 mM KCl, 1 mM

DTT, 10 mM HEPES-KOH (pH 7.9), 1 mM EDTA, 5% glycerol, and 0.3 mg/ml

BSA (New England BioLabs). The protein and DNA probe mix was incubated

at 30�C for 15 min and then mixed with 10 ml of 50% streptavidin sepharose

(GE Healthcare). The matrix with streptavidin beads was washed with several

column volumes before elution. Eluted proteins were analyzed by electropho-

resis on a 4%–12% NuPage Bis-Tris gradient gel (Life Technologies) and visu-

alized by silver stain (Silver Quest; Life Technologies). For UHRF1 and FANCL

in vitro DNA binding, the proteins were analyzed by electrophoresis on 10%

SDS-PAGE gel followed by western blot analysis.

MS Analysis

Proteins were reduced with DTT, cysteine residues were derivatized with

iodoacetamide, and the proteins were separated by SDS-PAGE. Proteins

from silver-stained gel bands were in-gel digested with trypsin (Shevchenko

et al., 1996). The generated peptide mixtures were subjected to liquid chro-

matography-tandem MS (LC-MS/MS) using a hybrid linear ion trap/FT-ICR

mass spectrometer (LTQ FT; Thermo Electron) essentially as described

previously (Haas et al., 2006). MS/MS spectra were assigned by searching

them with the SEQUEST algorithm (Eng et al., 1994) against the human In-

ternational Protein Index sequence database.

Protein Purification

Proteins purified from Sf9 cells were expressed using the pFastBac1 vector

(Life Technologies) with an engineered N-terminal Flag-HA tag. Cell pellets

were resuspended in lysis buffer (20 mM Tris-HCl (pH 8.0), 0.1 M KCl, 10%

glycerol, 0.1% Tween-20, 2 mM b-ME, and 0.2 mM phenylmethanesulfonyl

fluoride). Lysates were clarified by centrifugation and the supernatants were

incubated with M2 anti-FLAG agarose resin for 2 hr. The resin was washed

extensively and the protein was eluted in the same buffer containing

0.5 mg/ml FLAG peptide, but excluding Tween-20.

EMSA

EMSA was performed as previously described (Cohn et al., 2001) with the

following modifications: the binding reaction that contained 1 mg of UHRF1

and 1 nM of radiolabeled DNA was performed in 10 ml of a solution containing

14 mM Tris-HCl (pH 8.0), 100 mM NaCl, 3.4% glycerol, 1 mM DTT, 20 ng

poly(dI$dC)-poly(dI$dC), and 1 mg BSA (New England BioLabs). For super-

shift, 2 mg anti-HA antibody was added.

Fluorescence Anisotropy

Recombinant Flag-tagged UHRF1 was incubated with 10 nM ICL8 or ICL-XL

(Eurofins Genomics) labeled with Alexa Fluor 488 on the 50 terminus in a buffer
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containing 20 mM Tris-HCl (pH 8.0), 100 mM KCl, 1 mM DTT, and 0.2 mg/ml

BSA on ice for 1 hr. The reaction volumewas 40 ml. A PHERAstar FS fluorimeter

(BMG Labtech; lex = 490 nm, lem = 520 nm) was used to record the fluores-

cence polarization. Data were fitted with Origin software (OriginLab) with a

one-site specific binding equation.

Clonogenic Survival Assay

Cells (250–4,000) were plated in six-well plates and treated with different

dosages of the indicated damaging agents on the next day. For TMP/UVA

treatment, the cells were treated with 50 ng/ml TMP for 30 min and irradiated

with the indicated UVA dosages. Colony formation was scored after 10–

14 days using 1% (w/v) crystal violet in methanol.

Preparation of Whole-Cell Lysate

Cells were scraped off the dishes and centrifuged at 1,000 rpm for 5 min. Cell

pellets were resuspended and incubated in an equal volume of Benzonase

buffer (2 mM MgCl2, 20 mM Tris-HCl [pH 8.0], 10% glycerol, 1% Triton

X-100, and 12.5 U/ml Benzonase; (E1014, Sigma-Aldrich) on ice for

10 min. The cells were then lysed by addition of an equal volume of 2%

SDS to reach a final concentration of 1%. Samples were heated at 70�C
for 2 min. The protein concentration was determined by Bradford assay

(Bio-Rad Life Science).

Immunofluorescence Microscopy

HeLa cells were grown on coverslips, pre-extracted with cold PBS/1% Triton

X-100 on ice for 10 min, and fixed with 4% (w/v) paraformaldehyde for 10 min

at 25�C. FANCD2 foci were detected using an antibody against FANCD2

(FI-17; 1:100) in 5% (w/v) BSA in PBS, and visualized using Alexa Fluor 488-

conjugated secondary antibody (A21202; 1:1,000; Life Technologies). The

cells were fixed again using 4%paraformaldehyde after staining, andmounted

with DAPI-containing mounting medium (Vector Laboratories). Imaging was

carried out using the DeltaVision System (Applied Precision) installed with

Resolve3D SoftWoRx-Acquire Version 4.0.0. A 603 optic objective was

selected (Olympus 60X/1.42, PlanApo, N). Fluorescent images were captured

with a camera (CoolSNAP HQ/ICX285).

Live-Cell Imaging

EGFP-fused FANCD2 and mCherry-fused UHRF1 cDNA were inserted into

the pOZ vector as described above. Live-cell imaging was carried out with

an Olympus IX81 microscope connected to a PerkinElmer UltraView Vox

spinning-disk system equipped with a Plan-Apochromat 603/1.4 oil objec-

tive using Volocity software 6.3 for image capture. EGFP and mCherry

were excited with 488 nm and 561 nm laser lines, respectively. Throughout

the experiment, the cells were maintained at 5% CO2 and 37�C using a

live-cell environmental chamber (Tokai hit). Confocal image series typically

were recorded with a frame size of 512 3 512 pixels and a pixel size of

139 nm. For localized DNA damage induction, cells were seeded in a

glass-bottom dish (MatTek) and sensitized by incubation in DMEM supple-

mented with 2.5% FBS and 500 ng/ml TMP for 30 min at 37�C. Microirradia-

tion was performed using the FRAP preview mode of the Volocity software

by scanning three to five preselected stripes (50 3 3 pixels, 100 ms for

each irradiation time) within the nucleus 80 times with a 405-nm laser set

to 100% laser power. The mCherry and EGFP intensities at microirradiated

sites were quantified using ImageJ with Fiji and normalized by their inten-

sities before microirradiation.
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Supplementary figure legend 

 

Figure S1, related to Figures 3, 4 and 5 

 

A) Western blot analysis confirms the knock down level of UHRF1 and FANCD2 in 

the single and double knock down cells used in Figure 3G. B) HeLa.shScramble and 

HeLa.shUHRF1 were untreated or treated with TMP/UVA. Cells were harvested after 

3 hours, stained with propidium iodide, and analyzed by FACS analysis. 
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